779 research outputs found

    General Relativistic Magnetospheres of Slowly Rotating and Oscillating Magnetized Neutron Stars

    Full text link
    We study the magnetosphere of a slowly rotating magnetized neutron star subject to toroidal oscillations in the relativistic regime. Under the assumption of a zero inclination angle between the magnetic moment and the angular momentum of the star, we analyze the Goldreich-Julian charge density and derive a second-order differential equation for the electrostatic potential. The analytical solution of this equation in the polar cap region of the magnetosphere shows the modification induced by stellar toroidal oscillations on the accelerating electric field and on the charge density. We also find that, after decomposing the oscillation velocity in terms of spherical harmonics, the first few modes with m=0,1m=0,1 are responsible for energy losses that are almost linearly dependent on the amplitude of the oscillation and that, for the mode (l,m)=(2,1)(l,m)=(2,1), can be a factor 8\sim8 larger than the rotational energy losses, even for a velocity oscillation amplitude at the star surface as small as η=0.05 Ω R\eta=0.05 \ \Omega \ R. The results obtained in this paper clarify the extent to which stellar oscillations are reflected in the time variation of the physical properties at the surface of the rotating neutron star, mainly by showing the existence of a relation between PP˙P\dot{P} and the oscillation amplitude. Finally, we propose a qualitative model for the explanation of the phenomenology of intermittent pulsars in terms of stellar oscillations that are periodically excited by star glitches.Comment: 13 pages, 4 figures, submitted to MNRA

    ECHO: an Eulerian Conservative High Order scheme for general relativistic magnetohydrodynamics and magnetodynamics

    Get PDF
    We present a new numerical code, ECHO, based on an Eulerian Conservative High Order scheme for time dependent three-dimensional general relativistic magnetohydrodynamics (GRMHD) and magnetodynamics (GRMD). ECHO is aimed at providing a shock-capturing conservative method able to work at an arbitrary level of formal accuracy (for smooth flows), where the other existing GRMHD and GRMD schemes yield an overall second order at most. Moreover, our goal is to present a general framework, based on the 3+1 Eulerian formalism, allowing for different sets of equations, different algorithms, and working in a generic space-time metric, so that ECHO may be easily coupled to any solver for Einstein's equations. Various high order reconstruction methods are implemented and a two-wave approximate Riemann solver is used. The induction equation is treated by adopting the Upwind Constrained Transport (UCT) procedures, appropriate to preserve the divergence-free condition of the magnetic field in shock-capturing methods. The limiting case of magnetodynamics (also known as force-free degenerate electrodynamics) is implemented by simply replacing the fluid velocity with the electromagnetic drift velocity and by neglecting the matter contribution to the stress tensor. ECHO is particularly accurate, efficient, versatile, and robust. It has been tested against several astrophysical applications, including a novel test on the propagation of large amplitude circularly polarized Alfven waves. In particular, we show that reconstruction based on a Monotonicity Preserving filter applied to a fixed 5-point stencil gives highly accurate results for smooth solutions, both in flat and curved metric (up to the nominal fifth order), while at the same time providing sharp profiles in tests involving discontinuities.Comment: 20 pages, revised version submitted to A&

    Dynamics of thick discs around Schwarzschild-de Sitter black holes

    Get PDF
    We consider the effects of a cosmological constant on the dynamics of constant angular momentum discs orbiting Schwarzschild-de Sitter black holes. The motivation behind this study is to investigate whether the presence of a radial force contrasting the black hole's gravitational attraction can influence the occurrence of the runaway instability, a robust feature of the dynamics of constant angular momentum tori in Schwarzschild and Kerr spacetimes. In addition to the inner cusp near the black hole horizon through which matter can accrete onto the black hole, in fact, a positive cosmological constant introduces also an outer cusp through which matter can leave the torus without accreting onto the black hole. To assess the impact of this outflow on the development of the instability we have performed time-dependent and axisymmetric hydrodynamical simulations of equilibrium initial configurations in a sequence of background spacetimes of Schwarzschild-de Sitter black holes with increasing masses. The simulations have been performed with an unrealistic value for the cosmological constant which, however, yields sufficiently small discs to be resolved accurately on numerical grids and thus provides a first qualitative picture of the dynamics. The calculations, carried out for a wide range of initial conditions, show that the mass-loss from the outer cusp can have a considerable impact on the instability, with the latter being rapidly suppressed if the outflow is large enough.Comment: 12 pages; A&A, in pres

    General relativistic radiation hydrodynamics of accretion flows: II. Treating stiff source terms and exploring physical limitations

    No full text
    We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic hydrodynamics coupled to an optically thick radiation field in two existing GR-hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several 1D tests we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in 1D, we compute a luminosity versus accretion rate diagram for the setup of spherical accretion onto a Schwarzschild black hole and find good agreement with previous work. Lastly, we revisit the supersonic Bondi Hoyle Lyttleton (BHL) accretion in 2D where we can now present simulations of realistic temperatures, down to T~10^6 K. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching gamma_effective ~ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as eta ~ 10^{-2}; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of astrophysical systems

    Gluons, quarks, and the transition from nonperturbative to perturbative QCD

    Get PDF
    Lattice-based investigations of two fundamental QCD quantities are described, namely the gluon and quark propagators in Landau gauge. We have studied the Landau gauge gluon propagator using a variety of lattices with spacings from a = 0.17 to 0.41 fm. We demonstrate that it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings and to explore the infinite volume and continuum limits. These results confirm that the Landau gauge gluon propagator is infrared finite. We study the Landau gauge quark propagator in quenched QCD using two forms of the O(a)-improved propagator and we find good agreement between these. The extracted value of the infrared quark mass in the chiral limit is found to be 300 +/- 30 MeV. We conclude that the momentum regime where the transition from nonperturbative to perturbative QCD occurs is Q^2 approx 4GeV^2.Comment: 8 pages, 6 figures, 1 table. Talk presented by AGW at the Workshop on Lepton Scattering, Hadrons and QCD, March 26-April 5, 2001, CSSM, Adelaide, Australia. To appear in the proceeding

    Dynamics of oscillating magnetized relativistic tori around a Schwarzschild black hole

    No full text
    We present a comprehensive numerical study of the dynamics of magnetized relativistic axisymmetric tori orbiting in the background spacetime of a Schwarzschild black hole. The tori are modeled as having a purely toroidal magnetic field and a constant distribution of the specific angular momentum. Following previous investigations of tori in a purely hydrodynamical context, the dynamics of these objects has been studied upon the introduction of a perturbation which, for the values of the magnetic field considered here, triggers quasi-periodic oscillations (QPOs) lasting tens of orbital periods. As in the hydrodynamical case, the spectral distribution of the eigenfrequencies shows the presence of a fundamental p-mode and of overtones in a harmonic ratio: 2 : 3 : .... We comment on the implications of these results on the phenomenology observed for the QPOs in low-mass X-ray binaries containing a black hole candidate
    corecore